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An introduction to representations of 𝒑-adic groups

Jessica Fintzen

Abstract. An explicit understanding of the (category of all smooth, complex) representations of
𝑝-adic groups provides an important tool not just within representation theory. It also has applica-
tions to number theory and other areas, and, in particular, it enables progress on various different
forms of the Langlands program. In this write-up of the author’s ECM 2024 colloquium-style
talk, we will introduce 𝑝-adic groups and explain how the category of representations of 𝑝-adic
groups decomposes into subcategories, called Bernstein blocks. We also provide an overview of
what we know about the structure of these Bernstein blocks including a sketch of recent results
of the author with Adler, Mishra and Ohara that allow to reduce a lot of problems about the (cat-
egory of) representations of 𝑝-adic groups to problems about representations of finite groups of
Lie type, where answers are often already known or are at least easier to achieve. Moreover, we
provide an overview of what is known about the construction of supercuspidal representations,
which are the building blocks of all smooth representations and whose construction is also the
key to obtain the above results about the structure of the whole category of smooth represen-
tations. We will, in particular, focus on recent advances which include the work of the author
mentioned in the EMS prize citation as well as a hint towards her recent joint work with David
Schwein.

This article is a written version of the talk that the author gave during the 9th ECM.
For more extended and precise survey articles see [Fin23] (for a general math audi-
ence), [Finb] (for a more specialized audience, including graduate students working
in number theory and representation theory) and [Fina].

1. 𝒑-adic numbers and 𝒑-adic groups

In order to talk about the representation theory of 𝑝-adic groups, we first explain
what 𝑝-adic groups are, for which we should first explain what “𝑝-adic” even means.

Mathematics Subject Classification 2020: 22E50 (primary); 11F27, 22E35, 20C08,
20C20 (secondary).
Keywords: smooth representations of 𝑝-adic groups, supercuspidal representations, Bernstein
blocks, Hecke algebras.



2 Jessica Fintzen

Throughout this article, 𝑝 will denote a prime number. Once we have chosen our
favorite prime number 𝑝, we can define the 𝑝-adic absolute value of the integers Z
that measure how often an integer is divisible by 𝑝.

Definition 1.1. Let 𝑟 be a non-zero integer coprime to 𝑝, and let 𝑠 be a non-negative
integer. The 𝑝-adic absolute value |𝑝𝑠 · 𝑟 |𝑝 of the integer 𝑝𝑠 · 𝑟 is defined to be

|𝑝𝑠 · 𝑟 |𝑝 =

(
1
𝑝

)𝑠
.

We observe that the more often an integer is divisible by 𝑝, the smaller is its 𝑝-adic
absolute value.

Definition 1.2. The 𝑝-adic integersZ𝑝 are defined to be the completion of the integers
Z by the 𝑝-adic absolute value.

This means that a 𝑝-adic integer is of the form

𝑎0 + 𝑎1 · 𝑝 + 𝑎2 · 𝑝2 + 𝑎3 · 𝑝3 + . . . for some integers 𝑎𝑖 (0 ≤ 𝑎𝑖 < 𝑝),

because |𝑝𝑛 |𝑝 =

(
1
𝑝

)𝑛
goes to zero as 𝑛 goes to infinity.

Definition 1.3. The 𝑝-adic numbers Q𝑝 are the fraction field of the 𝑝-adic integers
Z𝑝, or, equivalently, the completion of the rational numbers Q with respect to 𝑝-adic
absolute value (that can be extended to the rational numbers).

Similarly to the 𝑝-adic integers, a 𝑝-adic number can be represented as

𝑎−𝑛 · 𝑝−𝑛 + . . . + 𝑎0 + 𝑎1 · 𝑝 + 𝑎2 · 𝑝2 + . . . with 𝑎𝑖 ∈ {0, . . . , 𝑝 − 1}.

While the 𝑝-adic numbers are, like the real numbersR, a completion of the rational
numbers, the topological space of the 𝑝-adic numbers arising from the 𝑝-adic absolute
value is very different from the topology on the real numbers. The 𝑝-adic numbers turn
out to be totally disconnected. To illustrate the topology on the 3-adic integers as an
example, note that the integers 0, 1 and 2 all have 3-adic distance 1 from each other. The
integers 0, 3, and 6 all have 3-adic distance 1

3 from each other, and similarly the integers
1, 1 + 3 = 4, 1 + 2 · 3 = 7 all have 3-adic distance 1

3 from each other, while any of the
integers 0, 3 or 6 (pictured in the lower left triangle of the figure in the middle of Figure
1) has 3-adic distance 1 from any of the integers 1, 1+ 3= 4, 1+ 2 · 3= 7 (pictured in the
lower right triangle in figure in the middle of Figure 1). Hence it is impossible to embed
the integers with their 3-adic distance in the Euclidean plane, but Figure 1 tries to give
a visualization of the 3-adic distances of the integers of the form 𝑎0 + 𝑎1 · 3 + 𝑎2 · 32

with 𝑎0, 𝑎1, 𝑎2 ∈ {0, 1} following [Cuo91]. We hope that these figures allow the reader
to imagine the fractal-like structure of the 3-adic integers, by adding more and more
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Figure 1. A visualization of the 3-adic integers based on [Cuo91].

3-adic “digits” in the presentation 𝑎0 + 𝑎1 · 3 + 𝑎2 · 32 + 𝑎333 + . . .. In particular, the
𝑝-adic integers are a compact group whose underlying topological space is totally
disconnected.

As mentioned above, the real numbers R and the 𝑝-adic numbers Q𝑝 arise both
as completion of the rational numbers Q, but for a different absolute value. Since the
real numbers are connected, more precisely, they are a line, while the 𝑝-adic numbers
are totally disconnected, we have seen that the resulting topological spaces are very
different. Another key difference between these fields consist of the following obser-
vation: The real numbers contain only one compact subgroup under addition, which
is the trivial subgroup consisting only of the element 0. The 𝑝-adic numbers, on the
other hand, contain infinitely many compact (and open) subgroups under addition, e.g.,
the 𝑝-adic integers Z𝑝 form a compact, open subgroup of Q𝑝, and similarly 𝑝 · Z𝑝 is
a compact open subgroup, and more generally 𝑝𝑛Z𝑝 for any integer 𝑛 is a compact,
open subgroup of Q𝑝. This means in particular that the element 0 in Q𝑝 has a basis
of open neighborhoods consisting of compact, open subgroups. This property trans-
lates into similar properties for 𝑝-adic groups that shapes the flavor of study of their
representation theory.

Before introducing 𝑝-adic groups, we like to mention that the 𝑝-adic numbers
have a sister field that behaves very similarly to the 𝑝-adic numbers: the Laurent series
F𝑝 ((𝑡)) over a finite field F𝑝 with 𝑝 elements, elements of which can be written as

𝑎−𝑛 · 𝑡−𝑛 + . . . + 𝑎0 + 𝑎1 · 𝑡 + 𝑎2 · 𝑡2 + . . . with 𝑎𝑖 ∈ F𝑝,

where 𝑡 is an abstract variable. There is an obvious similarity between Q𝑝 and F𝑝 ((𝑡))
based on the way we presented their elements and the reader is welcome to choose
whichever field they feel more comfortable with when reading this article. The key
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difference between the two fields is that the field of 𝑝-adic numbers Q𝑝 has charac-
teristic zero, it contain the rational numbers Q as a subfield, while the field of Laurent
series F𝑝 ((𝑡)) has characteristic 𝑝, it contain the finite field F𝑝 with 𝑝 elements as
a subfield in which 𝑝 = 0. From now on we write 𝐹 for any of the two fields Q𝑝 or
F𝑝 ((𝑡)). While we focus on these two fields in this article, everything covered here
also works for finite extensions of these two fields, which are called non-archimedean
local fields.

In order to introduce 𝑝-adic groups, we recall that examples of real Lie groups
include:
• the general linear group GL𝑛 (R), i.e., 𝑛 × 𝑛-matrices whose determinant is non-

zero with the group action being multiplication,
• the special linear group SL𝑛 (R), which is the subgroup of GL𝑛 (R) consisting of

those matrices whose determinant is 1,
• the special orthogonal group SO𝑛 (R), which is the subgroup of SL𝑛 (R) consisting

of those matrices 𝐴 satisfying 𝐴𝐴𝑇 = Id, where Id denotes the identity matrix and
𝐴𝑇 the transpose of 𝐴, in other words, these are the matrices that preserve the
standard inner product,

• the symplectic group Sp2𝑛 (R), which is the subgroup of GL2𝑛 (R) that preserves
a symplectic form.

Replacing the real numbersR in the above examples by the field 𝐹, we obtain examples
of what we call 𝑝-adic groups: GL𝑛 (𝐹), i.e., GL𝑛 (Q𝑝) and GL𝑛 (F𝑝 ((𝑡))), SL𝑛 (𝐹),
SO𝑛 (𝐹), Sp2𝑛 (𝐹). This means 𝑝-adic groups are nice subgroups of matrix groups
with entries in either the field of 𝑝-adic numbers Q𝑝 or its sister field F𝑝 ((𝑡)). Similar
to real Lie groups, there are also 𝑝-adic groups of type 𝐺2, 𝐹4, 𝐸6, 𝐸7, 𝐸8, and these
groups are in general classified using combinatorial data (root data) and additional
structure related to the absolute Galois group of 𝐹. Note that we use the terminology
“𝑝-adic groups” for these nice subgroups of GL𝑛 (𝐹) even though 𝐹 might be either
the 𝑝-adic numbers Q𝑝 or the Laurent series F𝑝 ((𝑡)) over the finite field F𝑝. For the
experts, the results we discuss below hold for groups 𝐺 (𝐹) where 𝐺 is a connected
reductive group over 𝐹 that splits over a tamely ramified field extension of 𝐹, but the
reader new to this topic is encouraged to just think of the explicit examples mentioned
above. For a more detailed introduction to 𝑝-adic groups including precise definitions
we refer the interested reader to Section 2 of the survey article [Fin23].

From now on we denote by 𝐺 a 𝑝-adic group.
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2. Representations of 𝒑-adic groups

Definition 2.1. A smooth representation of 𝐺 is a group homomorphism

𝜋 : 𝐺 → AutC(𝑉)

for some complex vector space𝑉 such that for every 𝑣 ∈𝑉 there exists an open subgroup
𝐾𝑣 ⊂ 𝐺 with 𝜋(𝑘) (𝑣) = 𝑣 ∀ 𝑘 ∈ 𝐾𝑣.

The vector space 𝑉 underlying a smooth representation of 𝐺 is usually infinite
dimensional. If 𝐺 = SL2(Q𝑝), then we can take as the 𝐾𝑣 appearing in the above defi-

nition subgroups of the form
(
1 + 𝑝𝑚Z𝑝 𝑝𝑚Z𝑝
𝑝𝑚Z𝑝 1 + 𝑝𝑚Z𝑝

)
det=1

for some positive integers
𝑚.

Smooth representations of 𝑝-adic groups have been studied for more than 50 years
with a long term goal being to understand the whole category of all smooth represen-
tations of 𝑝-adic groups as explicitly as possible.

Long term goal. Understand the category of all smooth representations of 𝐺.

Before explaining the structure of the category of representations of 𝑝-adic groups,
we would like to provide the reader with some examples and a procedure to construct
many representations that is used to approach the above long term goal.

2.1. Example of a representation

Let 𝐺 = SL2(Q𝑝) with subgroup 𝐵 =

(
Q𝑝 Q𝑝
0 Q𝑝

)
det=1

.

We set

𝑉 := { 𝑓 : 𝐵\𝐺 → C | 𝑓 locally constant}
≃
{
𝑓 : P1(Q𝑝) → C | 𝑓 locally constant

}
,

which is an infinite dimensional complex vector space, where P1(Q𝑝) denotes the
projective line overQ𝑝. The map 𝜋 :𝐺→ AutC(𝑉) defining our smooth representation
is given as follows: For 𝑔 ∈ 𝐺, we have

𝜋(𝑔) : 𝑉 −→ 𝑉

𝜋(𝑔) : 𝑥 ↦→ 𝑓 (𝑥) ↦→ 𝑥 ↦→ 𝑓 (𝑥𝑔).

The requirement that the functions in𝑉 are locally constant implies that this is a smooth
representation.
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2.2. Parabolic induction

We would like to generalize the example of the previous subsection. To do so, we
introduce the following class of subgroups of 𝐺 that we will replace the subgroup 𝐵
above by.

Definition 2.2. A parabolic subgroup of𝐺 =GL𝑛 (𝐹) (or SL𝑛 (𝐹), SO𝑛 (𝐹) or Sp2𝑛 (𝐹))
is a subgroup of the form

𝑔 ·

©­­­­­­­­«

★ ★ ★ ★ ★ ★

★ ★ ★ ★ ★ ★

★ ★ ★ ★

★ ★ ★

0 ★ ★ ★

★ ★ ★

ª®®®®®®®®¬
· 𝑔−1

for some choice of number and sizes of blocks (e.g., in the centered expression in this
definition we chose three blocks of sizes 2 × 2, 1 × 1, 3 × 3 for 𝑛 = 6 to illustrate the
shape of the upper-block-triangular matrices that we consider) and some choice of
𝑔 ∈ 𝐺.

For a more abstract general definition we refer the interested reader to [Fin23, §2].
Any parabolic subgroup admits a decomposition as a semi-direct product of another

𝑝-adic group, called Levi subgroup and denoted 𝑀 below, corresponding to (the 𝑔-
conjugate of) block-diagonal matrices, and a normal subgroup, called the unipotent
radical of the parabolic subgroup and denoted by 𝑈 below, corresponding to (the 𝑔-
conjugate of) the strictly-upper-block-triangular matrices with ones on the diagonal:

𝑔

©­­­­­­­­«

★ ★ ★ ★ ★ ★

★ ★ ★ ★ ★ ★

★ ★ ★ ★

★ ★ ★

0 ★ ★ ★

★ ★ ★

ª®®®®®®®®¬
𝑔−1

︸                        ︷︷                        ︸
= 𝑔

©­­­­­­­­«

★ ★

★ ★ 0
★

★ ★ ★

0 ★ ★ ★

★ ★ ★

ª®®®®®®®®¬
𝑔−1

︸                        ︷︷                        ︸
· 𝑔

©­­­­­­­­«

1 0 ★ ★ ★ ★

0 1 ★ ★ ★ ★

1 ★ ★ ★

1 0 0

0 0 1 0
0 0 1

ª®®®®®®®®¬
𝑔−1

︸                        ︷︷                        ︸
𝑃 = 𝑀 ⋉ 𝑈

If 𝑃 is a proper parabolic subgroup, i.e., 𝑃 ⊊ 𝐺, then the Levi subgroup 𝑀 is a
smaller 𝑝-adic group. We now introduce a construction to build smooth representations
of 𝐺 from smooth representations of 𝑀:

Definition 2.3 (Parabolic induction). Let 𝑃 = 𝑀 ⋉𝑈 be a parabolic subgroup of 𝐺.
Let 𝜎 : 𝑀 → AutC(𝑉𝜎) be a smooth representation of 𝑀 . The parabolic induction
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Ind𝐺𝑃 𝑉𝜎 is the representation of 𝐺 with vector space

Ind𝐺𝑃 𝑉𝜎 :=
{
𝑓 : 𝐺 → 𝑉𝜎 | 𝑓 (𝑚𝑢𝑔) = 𝜎(𝑚) ( 𝑓 (𝑔)) ∀𝑚 ∈ 𝑀, 𝑢 ∈ 𝑈, 𝑔 ∈ 𝐺

𝑓 locally constant

}
and for all 𝑔 ∈ 𝐺,

Ind𝐺𝑃 𝜎(𝑔) : Ind𝐺𝑃 𝑉𝜎 −→ Ind𝐺𝑃 𝑉𝜎
Ind𝐺𝑃 𝜎(𝑔) : 𝑥 ↦→ 𝑓 (𝑥) ↦→ 𝑥 ↦→ 𝑓 (𝑥𝑔).

Note that we recover the example discussed in Section 2.1 if we set𝐺 = SL2(Q𝑝),
𝑃 = 𝐵 and 𝑉𝜎 = C with 𝜎 : 𝐺 ↦→ 1 ∈ C× = AutC(C).

2.3. Supercuspidal representations – the building blocks

Definition 2.4. A smooth representation 𝜋 : 𝐺 → AutC(𝑉) is called irreducible, if
it has exactly two subrepresentations, i.e., if there exist exactly two subspace 𝑊 ⊆ 𝑉
(which are {0} and 𝑉) that are preserved under 𝜋(𝑔) for all 𝑔 ∈ 𝐺.

Definition 2.5. An irreducible smooth representation 𝜋 :𝐺→AutC(𝑉) is called super-
cuspidal if it is not a subrepresentation of Ind𝐺𝑃 𝑉𝜎 for every proper parabolic subgroup
𝑃 = 𝑀 ⋉𝑈 ⊊ 𝐺 and every irreducible smooth representation 𝜎 : 𝑀 → AutC(𝑉𝜎) of
𝑀 .

Fact 2.6. Let 𝜋 : 𝐺 → AutC(𝑉) be an irreducible smooth representation of 𝐺. Then
there exists a parabolic subgroup 𝑃 = 𝑀 ⋉𝑈 ⊆ 𝐺 and a supercuspidal representation
(𝜎,𝑉𝜎) of 𝑀 such that 𝑉 is a subrepresentation of Ind𝐺𝑃 𝑉𝜎 , which we write as

𝑉 ↩→ Ind𝐺𝑃 𝑉𝜎 .

Thus the supercuspidal representations form the building blocks of all smooth rep-
resentations of 𝑝-adic groups. Therefore our long-term goal to understand all represen-
tations of 𝑝-adic groups can be divided into two steps: constructing all supercuspidal
representations, and understanding how the whole category of smooth representations
is built up from the supercuspidal representations.

Problem 1. Construct all supercuspidal representations.

Solving this first problem of constructing all supercuspidal representations explic-
itly has plenty of applications within the representation theory of 𝑝-adic groups, e.g.,
when studying how representations of 𝐺 behave when we restrict them to subgroups,
or how they behave under various operations done to representations of 𝑝-adic groups.
It is also necessary to describe supercuspidal representations explicitly if one wants to
construct an explicit local Langlands correspondence, which means attaching to each
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representation of a 𝑝-adic group a number theoretic parameter (roughly a representa-
tion of the absolute Galois group of 𝐹) that bridges between representation theory and
number theory. There are also applications to automorphic forms, which are a vast gen-
eralization of modular forms, for an example see [FS21], and many more applications
beyond the representation theory of 𝑝-adic groups itself.

The vague answer to Problem 1 is that we can do this under minor assumptions. We
will make this more precise in Section 2.6. For now, we first assume that we can con-
struct supercuspidal representations and we try to understand how the whole category
of smooth representations of 𝐺 looks like.

2.4. The category of smooth representations

By Bernstein ([Ber84]) the category Rep(𝐺) of all smooth representations of𝐺 decom-
poses into a product of smaller subcategories as follows:

Rep(𝐺)︸   ︷︷   ︸
smooth

representations

=
∏

(𝑀,𝜎)/∼
Rep(𝐺)[𝑀,𝜎 ]︸           ︷︷           ︸

Bernstein
block

(2.1)

The decomposition is indexed by pairs consisting of a Levi subgroup𝑀 of (a parabolic
subgroup of) 𝐺 and a supercuspidal representation 𝜎 of 𝑀 , where the pairs (𝑀, 𝜎)
are considered up to an equivalence relation that ensures that each Bernstein block
appears only once in the product. More precisely, two pairs (𝑀, 𝜎) and (𝑀 ′, 𝜎′) are
equivalent if there exists 𝑔 ∈ 𝐺 and a one-dimensional representation 𝜙 : 𝑀 → C×

that is trivial on all compact subgroups of 𝑀 such that

𝑀 = 𝑔𝑀 ′𝑔−1 and 𝜎(𝑚) = 𝜎′ (𝑔−1𝑚𝑔) · 𝜙(𝑚) for 𝑚 ∈ 𝑀.

Given such a pair (𝑀, 𝜎), the attached Bernstein block Rep(𝐺)[𝑀,𝜎 ] consists of all
those representations all of whose irreducible subquotients are contained in some
Ind𝐺𝑃′ 𝜎

′ for some parabolic 𝑃′ with Levi𝑀 ′ and with (𝑀 ′,𝜎′) equivalent to (𝑀,𝜎). In
particular, the Bernstein block Rep(𝐺)[𝑀,𝜎 ] contains the parabolic induction Ind𝐺𝑃 𝜎
for any parabolic subgroup 𝑃 with Levi subgroup 𝑀 , and it can also be characterized
as the block that contains Ind𝐺𝑃 𝜎. Moreover, the Bernstein blocks are indecompos-
able, i.e., they are not themselves products of smaller non-trivial subcategories, which
is why they merit to be called blocks.

For example, if 𝐺 = SL2(Q𝑝), then up to conjugation we have two choices for 𝑀:

𝑀 = 𝐺 or 𝑀 = 𝑇 :=
{(

𝑡 0
0 𝑡−1

)
| 𝑡 ∈ Q×

𝑝

}
.

In the case 𝑀 = 𝐺, let 𝜎 : 𝐺 → AutC(𝑉𝜎) be a supercuspidal representation of
𝐺. Then the Bernstein block Rep(SL2(Q𝑝))[SL2 (Q𝑝 ) ,𝜎 ] contains as objects arbitrary
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finite and infinite direct sums of 𝜎, i.e., 𝜎, 𝜎 ⊕ 𝜎, 𝜎 ⊕ 𝜎 ⊕ 𝜎, . . . are objects of this
Bernstein block. Since𝜎 is irreducible, by Schur’s lemma the only morphisms between
𝑉𝜎 and𝑉𝜎 that commute with𝜎(𝑔) for all 𝑔 ∈𝐺 are multiplication by a scalar, in other
words, Hom𝐺 (𝑉𝜎 ,𝑉𝜎) = C. From this one can deduce the structure of the morphisms
between all other objects in this Bernstein block.

The Bernstein blocks with more complicated structures arise when one consid-
ers 𝑀 = 𝑇 . As an example, we write triv for the trivial one-dimensional represen-
tation of 𝑇 , i.e., 𝑉triv = C and triv : 𝑇 ↦→ 1 ∈ C× = AutC(𝑉triv). The Bernstein block
Rep(SL2(Q𝑝))[𝑇,triv] is called the principal block and contains by definition Ind𝐺𝐵 triv,

where 𝐵 =

(
Q𝑝 Q𝑝
0 Q𝑝

)
det=1

as above. The representation Ind𝐺𝐵 triv contains the triv-

ial one-dimensional representation triv of 𝐺 as a subrepresentation and the quotient
Ind𝐺𝐵 triv/triv is another irreducible smooth representation of𝐺 that is called the Stein-
berg representation and denote by St. Hence the trivial representation and the Steinberg
representation are both also contained in the principal block and so is their sum triv⊕St.
However, the sum triv⊕St is not isomorphic to the parabolic induction Ind𝐺𝐵 triv, even
though both contain the same subquotients, so the principal block exhibits a more
complicated structure.

Nevertheless, it turns out that we can describe this structure rather well as follows:
The principal block Rep(SL2(Q𝑝))[𝑇,triv] is equivalent to the category of (unital right)
modules over the affine Hecke algebra Haff that is defined as follows: A basis for the
complex vector space underlying the affine Hecke algebra Haff is given by{

𝑇𝑤 | 𝑤 ∈ 𝑊aff := ⟨𝑠0, 𝑠1 | 𝑠2
𝑖 = 1⟩

}
.

Note that the abstractly defined group 𝑊aff is the group of transformations of a plane
that is generated by two reflections across two parallel hyperplanes. The relations that
describe the multiplication in the affine Hecke algebra are generated by

𝑇𝑠𝑖𝑇𝑤 =

{
𝑇𝑠𝑖𝑤 ℓ(𝑠𝑖𝑤) > ℓ(𝑤)
𝑝𝑇𝑠𝑖𝑤 + (𝑝 − 1)𝑇𝑤 ℓ(𝑠𝑖𝑤) < ℓ(𝑤)

,

where ℓ denotes the length function 𝑊aff → Z≥0 that assigns to an element 𝑤 in the
affine Weyl group𝑊aff the length of the shortest expression 𝑠0𝑠1𝑠0 . . . or 𝑠1𝑠0𝑠1 . . . that
equals 𝑤. Finally, the modules of the affine Hecke algebra Haff are well understood.

By the Bernstein decomposition (2.1), describing the category of smooth repre-
sentations reduces to the following problem, in addition to Problem 1:

Problem 2. Describe the Bernstein block Rep(𝐺)[𝑀,𝜎 ] explicitly.
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2.5. Bernstein blocks: Hecke algebras and reduction to depth-zero

We sketch an answer to Problem 2 based on our recent preprints [AFMOa] and [AFMOb]
that are joint with Adler, Mishra and Ohara and that were still work in progress during
the ECM. For a more detailed description see the survey [Fina].

The answer to Problem 2 assuming the prime 𝑝 is not very small (analogous to
the assumptions made for the construction of supercuspidal representations discussed
in more detail in Section 2.6 below), which we will assume from now on, consists of
two parts. The first result is of independent interest.

Vague Theorem 2.1 (Adler–Fintzen–Mishra–Ohara ([AFMOa] and [AFMOb])). Given
a Bernstein block Rep(𝐺)[𝑀,𝜎 ] , we have an equivalence of Bernstein blocks

Rep(𝐺)[𝑀,𝜎 ] ≃ Rep(𝐺0)[𝑀0 ,𝜎0 ]

for some subgroup 𝐺0 ⊆ 𝐺 (which becomes a Levi subgroup over a field extension),
some Levi subgroup 𝑀0 of a parabolic subgroup of 𝐺0 and some depth-zero super-
cuspidal representation 𝜎0 of 𝑀0.

We will say a few more words about depth-zero supercuspidal representations
below, but the main feature of these representations is that they essentially correspond
to representations of finite groups of Lie type. Hence the above result allows to reduce
a lot of questions in the representation theory of 𝑝-adic groups and the explicit and cat-
egorical local Langlands program to representations of depth zero, where answers are
often either already known or much easier to tackle. Such a result has previously only
been available for some special cases of 𝐺 and in the two “extreme” cases of 𝑀 = 𝑇 ,
where 𝑇 denotes a split maximal torus, which means in terms of Definition 2.2 that all
the blocks have size 1 × 1, by Roche ([Roc98]), and 𝑀 = 𝐺 by Ohara ([Oha24]).

The second part to answer Problem 2 is that we already understood the structure of
the Bernstein block Rep(𝐺0)[𝑀0 ,𝜎0 ] very explicitly in many cases since the early 1990s
thanks to Morris ([Mor93]) and the general case is now treated in [AFMOa]: We can
describe each depth-zero Bernstein block for all 𝑝-adic groups explicitly as modules
over an explicit algebra H with explicit generators and relations. More precisely, we
proved that the Hecke algebra H is isomorphic to a semidirect product of an affine
Hecke algebra Haff (generalizing the affine Hecke algebra that we have seen in the
example above, allowing more general affine Weyl groups) with a twisted group algebra
C[Ω, 𝜇], see [AFMOa, Notation 3.10.8] for more precise definitions.

Vague Theorem 2.2 (Morris ([Mor93]) and Adler–Fintzen–Mishra–Ohara ([AFMOa])).

Rep(𝐺0)[𝑀0 ,𝜎0 ] ≃ C[Ω, 𝜇] ⋉Haff − mod
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Thus, combining Theorem 2.1 and Theorem 2.2 we obtain the following result:

Rep(𝐺)[𝑀,𝜎 ] ≃ Rep(𝐺0)[𝑀0 ,𝜎0 ] ≃ C[Ω, 𝜇] ⋉Haff − mod.

In fact, the first equivalence (Theorem 2.1) is proven via an explicit isomorphism of
Hecke algebras. Since modules over affine Hecke algebras, and more general mod-
ules over the semi-direct products C[Ω, 𝜇] ⋉ Haff are well studied and understood,
this allows us to also understand the structure of the previously mysterious Bernstein
blocks.

2.6. Construction of supercuspidal representations for general 𝒑-adic groups

We return to Problem 1, the construction of (all) supercuspidal representations of 𝑝-
adic groups.

For about 50 years, mathematicians have tried to construct these supercuspidal
representations. In 1979, Carayol ([Car79]) gave a construction of supercuspidal rep-
resentations that provides all supercuspidal representations of GL𝑛 (𝐹) for 𝑛 a prime
number different from 𝑝. In 1986, Moy ([Moy86]) proved that Howe’s construction
([How77]) from the 1970s exhausts all supercuspidal representations of GL𝑛 (𝐹) if 𝑛
is an integer coprime to 𝑝. In the early 1990s, Bushnell and Kutzko extended these
constructions to obtain all supercuspidal representations of GL𝑛 (𝐹) for arbitrary 𝑛
([BK93]). Similar methods have later been exploited by Stevens ([Ste08]) to construct
all supercuspidal representations of classical groups, i.e., symplectic, orthogonal and
unitary groups, under the assumption that 𝑝 ≠ 2, and by Sécherre and Stevens ([SS08])
to construct all supercuspidal representations of inner forms of GL𝑛 (𝐹), i.e., GL𝑚(𝐷)
for some division algebra 𝐷. There has also been a lot of prior work of mathematicians
solving special cases, for a few more details see, for example, [Finb].

The picture has been less complete for arbitrary reductive groups. The introduc-
tion of the Moy–Prasad filtration in the 1990s spurred remarkable progress. The work
of Moy and Prasad built upon the innovative Bruhat–Tits theory introduced in the
1970s/1980s: In [BT72, BT84], Bruhat and Tits defined a building B(𝐺, 𝐹) associ-
ated to 𝐺 on which 𝐺 acts. For each point 𝑦 in B(𝐺, 𝐹), they constructed a compact
subgroup𝐺𝑦,0 of𝐺, called a parahoric subgroup, which is (up to finite index) the sta-
bilizer 𝐺𝑦 in 𝐺 of the point 𝑦. In [MP94,MP96], Moy and Prasad defined a filtration
of these parahoric subgroups by smaller, normal subgroups

𝐺𝑦,0 ⊲ 𝐺𝑦,𝑠1 ⊲ 𝐺𝑦,𝑠2 ⊲ 𝐺𝑦,𝑠3 ⊲ . . . ,

where 0 < 𝑠1 < 𝑠2 < . . . are real numbers depending on 𝑦. These subgroups play a
crucial role in the study and construction of supercuspidal representations. In some
sense, one can heuristically imagine the subgroups 𝐺𝑦,𝑠𝑖 as the stabilizer of all points
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Figure 2. Bruhat–Tits building for 𝐺 = SL2 (Q2).

in the Bruhat–Tits building that are within a distance 𝑠𝑖 of 𝑦. We set 𝐺𝑦,𝑟 := 𝐺𝑦,𝑠𝑖 for
𝑠𝑖−1 < 𝑟 ≤ 𝑠𝑖 . The quotient 𝐺𝑦,0/𝐺𝑦,𝑠1 is a finite group of Lie type.

For example, if we take 𝐺 = SL2(Q𝑝), then the Bruhat–Tits building is an infinite
tree with valency 𝑝 + 1, see Figure 2 (for 𝑝 = 2). Let 𝑦 be the barycenter of a maximal
facet, i.e., the center of an edge of the infinite tree, and let 𝑥 be a vertex. Then (by
choosing an appropriate basis) the associated Moy–Prasad filtrations at the points 𝑥
and 𝑦 look like the following:

𝐺𝑥,0 =

(
Z𝑝 Z𝑝
Z𝑝 Z𝑝

)
det=1

𝐺𝑦,0 =

(
Z𝑝 𝑝Z𝑝
Z𝑝 Z𝑝

)
det=1

𝐺𝑦,0.5 =

(
1 + 𝑝Z𝑝 𝑝Z𝑝

Z𝑝 1 + 𝑝Z𝑝

)
det=1

𝐺𝑥,1 =

(
1 + 𝑝Z𝑝 𝑝Z𝑝
𝑝Z𝑝 1 + 𝑝Z𝑝

)
det=1

𝐺𝑦,1 =

(
1 + 𝑝Z𝑝 𝑝2Z𝑝
𝑝Z𝑝 1 + 𝑝Z𝑝

)
det=1

𝐺𝑦,1.5 =

(
1 + 𝑝2Z𝑝 𝑝2Z𝑝
𝑝Z𝑝 1 + 𝑝2Z𝑝

)
det=1

𝐺𝑥,2 =

(
1 + 𝑝2Z𝑝 𝑝2Z𝑝
𝑝2Z𝑝 1 + 𝑝2Z𝑝

)
det=1

𝐺𝑦,2 =

(
1 + 𝑝2Z𝑝 𝑝3Z𝑝
𝑝2Z𝑝 1 + 𝑝2Z𝑝

)
det=1

...
...

Based on this filtration, Moy and Prasad introduced in [MP94, MP96] the notion
of depth of a representation, which measures the first occurrence of a fixed vector in a
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given representation. More precisely, it is the smallest non-negative rational number
𝑟 such that the representation contains a vector fixed under 𝐺𝑦,𝑟+ := ∪𝑠>𝑟𝐺𝑦,𝑠 for
some 𝑦 ∈ B(𝐺, 𝐹). In [MP96], Moy and Prasad gave a classification of depth-zero
representations, showing, roughly speaking, that they correspond to representations of
finite groups of Lie type, the group 𝐺𝑦,0/𝐺𝑦,0+. A similar result was obtained shortly
afterwards by Morris ([Mor99]) using Hecke algebra techniques.

The first construction of positive-depth supercuspidal representations for general
𝑝-adic groups1 was given by Adler ([Adl98]) in 1998 and generalized by Yu ([Yu01])
in 2001. Since then, Yu’s construction has been widely used. However, about 20 years
later it was noticed by Spice that Yu’s proof relies on a misprinted (and therefore
false) statement in [Gé77], and therefore it became uncertain for a few years whether
the representations constructed by Yu are irreducible and supercuspidal. In [Fin21a]
we illustrate the impact of this false statement on Yu’s proof by providing a counterex-
ample to Proposition 14.1 and Theorem 14.2 of [Yu01] and at the same time we offer
a different argument for the second half of Yu’s proof that avoids the false statements
and show that, nevertheless, Yu’s construction yields supercuspidal representations.

However, Proposition 14.1 and Theorem 14.2 of [Yu01] are the main intertwining
results in [Yu01] that not only formed the heart of the proof of supercuspidality but are
also crucial for other applications. In [FKS23], in joint work with Kaletha and Spice,
we therefore construct a quadratic character that allows us to twist Yu’s construction so
that Yu’s initial proof and also the intertwining results hold true for Yu’s construction
twisted by our quadratic character. This technical result has been the key to calculate
Harish-Chandra character formulas ([Spi18] and [Spi]), to construct a local Langlands
correspondence for a large class of representations ([Kal]), and to obtain Theorems 2.1
and 2.2 above.

Since many results in our area are only valid for the representations constructed
by Yu, one might hope that all supercuspidal representations arise in this way. In 2007
Kim ([Kim07]) showed that Yu’s representations indeed include all supercuspidal rep-
resentations if 𝐹 has characteristic zero, i.e., if we work with Q𝑝, but not with F𝑝 ((𝑡)),
and if in addition the prime 𝑝 is very large. In 2021 we used completely different and
much more explicit techniques in [Fin21d] to show that all supercuspidal representa-
tions of 𝐺 are obtained from Yu’s construction under much more mild assumptions
on 𝑝, more precisely that 𝑝 does not divide the order of the absolute Weyl group of
𝐺, which excludes for exceptional groups at most the primes 2, 3, 5, and 7. In par-
ticular, our result holds for any 𝐹, we do not make a difference between Q𝑝 and its
sister F𝑝 ((𝑡)). Moreover, in [Fin21c] we illustrate that these assumptions are optimal

1for experts, as mentioned above, the groups considered are reductive groups over non-
archimedean local fields that split over a tamely ramified field extension
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in general (at least if one considers a slightly more general set-up than we discuss in
these notes). This settles the long search for all supercuspidal representations under
minor assumptions.

On the other hand, this also means that there are more representations to be found
for small 𝑝. In 2014, Reeder and Yu ([RY14]) gave a new construction of some super-
cuspidal epipelagic representations. Epipelagic representations are representations of
smallest positive depth. In [FR17] and [Fin21b], we showed that the input for Reeder–
Yu’s construction also exists for small primes 𝑝, which provides examples of positive-
depth supercuspidal representations that do not arise from Yu’s construction. These
representations have already found various applications to the study of automorphic
representations and the inverse Galois problem. However, because these representa-
tions are very special and far from exhaustive, many more representations remain to
be discovered in the future, a large class of which are the subject of current work in
progress. A first big step in this direction is the preprint [FS] from this year in which we
extend in joint work with David Schwein the construction by Yu to also work for 𝑝 = 2,
a question that had remained open for about 25 years due to the use of the theory of
Heisenberg–Weil representations in Yu’s construction, which relied on 𝑝 ≠ 2. We also
remove a superfluous genericity condition by overcoming the challenges of working
with disconnected groups, which aligns our construction more closely with poten-
tial geometric approaches. This yields new supercuspidal representations of arbitrary
depth (for small primes 𝑝).

All the supercuspidal representations constructed above are of the following form:

c-ind𝐺𝐾𝑉𝜌 :=
{
𝑓 : 𝐺 → 𝑉𝜌

���� 𝑓 (𝑘𝑔) = 𝜌(𝑘) ( 𝑓 (𝑔)) ∀𝑔 ∈ 𝐺, 𝑘 ∈ 𝐾
𝑓 compactly supported mod center

}
for some compact-mod-center, open subgroup 𝐾 ⊂ 𝐺, e.g., SL2(Z𝑝) ⊂ SL2(Q𝑝), and
some finite-dimensional representation (𝜌, 𝑉𝜌) of 𝐾 . The difficulty lies in finding
appropriate 𝐾 and 𝜌 that yield (all) supercuspidal representations.
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